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Abstract
We investigate the reductions of the dispersionless Harry Dym hierarchy
to systems of finitely many partial differential equations. These equations
must satisfy the compatibility condition and they are diagonalizable and semi-
Hamiltonian. By imposing a further constraint, the compatibility is reduced to
a system of algebraic equations, whose solutions are described.
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Mathematics Subject Classification: 35N10, 37K10

1. Introduction

Dispersionless integrable equations arise in various contexts and have attracted people to
investigate it from different point of view, such as topological field theory (WDVV equation)
[3, 13–15, 30], matrix models [6, 7], conformal maps and interface dynamics [32, 40, 41],
Einstein–Weyl space [16, 17]. The hydrodynamic reductions are the most developed method
to find the exact solutions of the dispersionless integrable equations [5, 8, 12, 21, 22, 28–30].
From the hydrodynamic reductions, one can construct the Riemann invariants and the
corresponding characteristic speeds satisfy the semi-Hamiltonian property or Tsarev’s
condition [38]. Hence, the generalized hodograph method can be used to find the exact
solutions. Also, the solutions of dispersionless integrable equations can be found by the
nonlinear Beltrami equation [26, 27], slightly different from the generalized hodograph
method.

Let us recall the dispersionless non-standard Lax hierarchy [33, 39]. Suppose that λ is an
algebra of the Laurent series of the form

λ =
{

A|A =
N∑

i=−∞
aip

i

}
,

with coefficients ai depending on an infinite set of variables t1 ≡ x, t2, t3, . . . . We can define
a Lie bracket associated with λ as follows:
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{A,B} = ∂A

∂x

∂B

∂p
− ∂A

∂p

∂B

∂x
, A,B ∈ λ

which can be regarded as the Poisson bracket defined in the two-dimensional phase space
(x, p). The algebra λ can be decomposed into the Lie sub-algebras as

λ = λ�k ⊕ λ<k (k = 0, 1, 2),

where

λ�k =

A ∈ �|A =

∑
i�k

aip
i




λ<k =
{

A ∈ λ|A =
∑
i<k

aip
i

}
.

Based on this, the Lax formulation of the dispersionless integrable hierarchy can be formally
defined as

∂λ

∂tn
= {(

λ
n
N

)
�k

, λ
}
.

• For k = 0, it is called the dispersionless KP hierarchy (dKP) [39].
• For k = 1, it is called the dispersionless modified KP (dmKP) hierarchy [11, 34].
• For k = 2, it is called the dispersionless Harry Dym (dDym) hierarchy [11, 12, 34]. It is

the purpose of this paper.

We define the dispersionless Harry Dym (dDym) hydrodynamic systems as follows. The Lax
operator of dDym has the form

λ(p) = A−1p + A0 + A1p
−1 + A2p

−2 + A3p
−3 + · · · .

Then the dDym hydrodynamic system is [11, 34]

∂λ

∂tn
= {λ,�n(p)}, (1)

where

�n(p) = (λ(p)n)�2.

Here ( )�2 denotes the projection of the Laurent series onto a linear combination of λ(p)n with
n � 2. From the zero curvature equation (t3 = t and t2 = y)

∂�2(p)

∂t
− ∂�3(p)

∂y
= {�2(p),�3(p)},

where

�2(p) = A2
−1p

2 and �3(p) = A3
−1p

3 + 3A2
−1A0p

2,

one can get the dispersionless Harry Dym equation [11]

∂A−1

∂t
= 3

4

1

A−1

[
A2

−1∂
−1
x

(
A−1y

A2
−1

)]
y

.

Now, considering the y-flow, we have

λy = {
λ,A2

−1p
2
} = 2pA2

−1λx − (
A2

−1

)
x
p2λp, (2)
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or

A−1y = 2A2
−1A0x

A0y = 2A2
−1A1x +

(
A2

−1

)
x
A1

...

Any = 2A2
−1An+1,x + (n + 1)

(
A2

−1

)
x
An+1, (3)

where n = −1, 0, 1, 2, 3, . . . . Comparing it with the Benney moment chain [23, 36, 44], one
calls (3) the dDym moment chain. It is the subject of this paper.

The paper is organized as follows. In the next section, one considers the reduction
problems and obtains finitely many partial differential equations. In section 3, we prove
the semi-Hamiltonian property when using Riemann invariants. In section 4, by imposing a
further constraint, one gets some particular reductions. In the final section, we discuss some
problems to be investigated.

2. The compatibility conditions

In this section, we consider the hydrodynamic reduction problems following [1, 21, 22]. For
non-hydrodynamic reductions, one refers to [2].

We assume that the moments Ai are functions of only N independent variables ui . If the
Ai satisfy (3), then it is straightforward to show that the mapping

(u−1, u0, u1, u2, . . . , uN−2) → (A−1, A0, A1, A2, . . . , AN−2)

is non-degenerate. Hence without loss of generality, we set u−1 = A−1, u0 = A0, u1 =
A1, . . . , uN−2 = AN−2. The first N moments are the independent variables, while the higher
moments are functions of them, i.e.,

Ak = Ak(A−1, A0, . . . , AN−2), k � N − 1.

The equations of motion for A−1, A0, . . . , AN−2 become

∂Aj

∂y
= 2A2

−1Aj+1,x + (j + 1)
(
A2

−1

)
x
Aj+1, j � N − 3 (4)

∂AN−2

∂y
= 2A2

−1AN−1,x + (N − 1)
(
A2

−1

)
x
AN−1

= 2A2
−1

∂AN−1

∂Aj

∂Aj

∂x
+ (N − 1)

(
A2

−1

)
x
AN−1, (5)

while each higher moment (AN−1, . . . , ) must satisfy the overdetermined system (k � N − 1)

using (4), (5)

∂Ak

∂y
=

N−3∑
j=−1

∂Ak

∂Aj

[
2A2

−1Aj+1,x + (j + 1)
(
A2

−1

)
x
Aj+1

]

+
∂Ak

∂AN−2


2A2

−1

N−2∑
j=−1

∂AN−1

∂Aj

∂Aj

∂x
+ (N − 1)

(
A2

−1

)
x
AN−1




= 2A2
−1


 N−2∑

j=−1

∂Ak+1

∂Aj

∂Aj

∂x


 + (k + 1)

(
A2

−1

)
x
Ak+1.
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Comparing the coefficients of ∂Aj

∂x
(j = −1, 0, 1, . . . , N − 2), one has

∂Ak+1

∂Aj

= ∂Ak

∂Aj−1
+

∂Ak

∂AN−2

∂AN−1

∂Aj

, 0 � j � N − 2 (6)

A−1
∂Ak+1

∂A−1
=

N−2∑
j=−1

∂Ak

∂Aj

(j + 1)Aj+1 + A−1
∂Ak

∂AN−2

∂AN−1

∂A−1
− (k + 1)Ak+1. (7)

Now, letting k = N − 1 and defining r = log A−1, one has

∂AN

∂Aj

= ∂AN−1

∂Aj−1
+

∂AN−1

∂AN−2

∂AN−1

∂Aj

, 0 � j � N − 2 (8)

∂AN

∂r
=

N−2∑
j=−1

∂AN−1

∂Aj

(j + 1)Aj+1 +
∂AN−1

∂AN−2

∂AN−1

∂r
− NAN. (9)

The compatibility of (8) and (9) gives a system � of N(N−1)

2 nonlinear second-order equation
for the single known AN−1(A−1, A0, A1, . . . , AN−2). One can show that by induction if � is
satisfied then the analogous compatibility for Ak (k � N) is also derived. Let us investigate
the case N = 2 in more detail. Then we have (A0 = s)

∂A2

∂s
= A1r exp(−r) + A2

1s

∂A2

∂r
= A1A1s + A1sA1r − 2A2.

Cross-differentiating, one gets the quasi-linear second differential equation

A1rr exp(−r) + A1sA1rs − (A1 + A1rs)A1ss + A1r exp(−r) + (A1s)
2 = 0. (10)

Letting

A1 = a, A1r = b, A1s = c,

one can express (10) as the degenerate non-homogeneous hydrodynamic system
a

b

c




r

=

0 0 0

0 −c exp r (a + b) exp r

0 1 0




a

b

c




s

+


 b

−b − c2 exp r

0


 . (11)

Define the characteristic speeds as

u = −c exp r +
√

c2 exp(2r) + 4(a + b) exp r

2

v = −c exp r +
√

c2 exp(2r) − 4(a + b) exp r

2
.

A simple calculation yields(
u

v

)
r

=
(

v 0
0 u

)(
u

v

)
s

+

( uv
v−u
uv

u−v

)
, (12)

there being no a-term! It is of non-homogeneous hydrodynamic systems of Tsarev–Gibbons
type [21, 18] and it has one obvious hydrodynamic-type conserved density (u + v). Moreover,
according to the theory of Poisson commuting Hamiltonians [18], one can also find a conserved
density of first derivatives:

(u − v)

[(us

u

)2
−
(vs

v

)2
]

.
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For a given affinor v
j

i (u) of a hydrodynamic system

∂ui

∂y
= v

j

i (u)
∂uj

∂x
, (13)

one can define the Nijenhuis tensor Nk
ij (u) [35]

Nk
ij = vs

i

∂vk
j

∂us

− vs
j

∂vk
i

∂us

+ vk
s

∂vs
i

∂uj

− vk
s

∂vs
j

∂ui

.

Then we can define the corresponding Haantjes tensor Hi
jk(u) [24]

Hi
jk = (

Ni
qpv

q

k − N
q

kpvi
q

)
v

p

j − (
N

p

qjv
q

k − N
q

kjv
p
q

)
vi

p.

The system (13) is diagonalized if and only if the Haantjes tensor Hi
jk(u) vanishes identically

and all the eigenvalues of the affinor v
j

i (u) are real and distinct. That is, there exist N functions
λn (Riemann invariants), depending on the variables ui , in which equation (13) is diagonalized

∂λn

∂y
= Vn

∂λn

∂x
, (14)

where Vn are the eigenvalues of the matrix v
j

i (u), called characteristic speed. For the
hydrodynamic systems (4) and (5) of the reduced dDym, the Haantjes tensor Hi

jk(u) vanishes
identically whenever the systems (8) and (9) are satisfied. Therefore, any consistent reduction
of dDym is diagonalizable and then we can use Riemann invariants to discuss the problem
further.

Finally, one remarks that as in the case of dKP hierarchy [28], a similar argument shows
that for the reduced dDym hierarchy (1) we also have the Kodama–Gibbons formulation: the
Riemann invariants are

λn = λ(qn), where
∂λ

∂p
(qn) = 0, n = 1, 2, . . . , N (15)

and then the hierarchy (1) can be expressed as

∂λn

∂tm
= �̂m(V̂n)

∂λn

∂x
,

where V̂n = (q1, q2, . . . , qN) and �̂m(V̂n) = d�m(p)

dp

∣∣
p=V̂n

.

3. Semi-Hamiltonian property

In this section, one will prove the semi-Hamiltonian property (Tsarev’s condition) [38] of the
reduced dDym hierarchy (1) using Riemann invariants. Suppose that each moment An can be
expressed as the Riemann’s invariants λi , which satisfy the equation (t2 = y)

∂λi

∂y
= Vi

∂λi

∂x
, (16)

where

Vi = 2A2
−1qi, i = 1, 2, 3, . . . , N.

Then the moment equations (3) can be written as

ViAn,λi
= 2A2

−1An+1,λi
+ (n + 1)An+1

(
A2

−1

)
λi

. (17)

On the other hand, from (1), we also have, equivalent to (17),

∂λ

∂y
= ∂λ

∂p

(
A2

−1

)
x
p2 − 2

∂λ

∂x
A2

−1p
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and then, using (16), one obtains, after reshuffling terms,

∂λ

∂λi

= p2 ∂λ

∂p

(
A2

−1

)
λi

1

Vi + 2A2
−1p

. (18)

Cross-differentiating, one has (φ = A2
−1)

φλiλj
(Vi + 2φp)(Vj + 2φp)2 − φλi

φλj
2φp2(Vi + 2φp) − (Vj + 2φp)2φλi

∂Vi

∂λj

− 2pφλi
φλj

(Vj + 2φp)2 = φλiλj
(Vj + 2φp)(Vi + 2φp)2

−φλi
φλj

2φp2(Vj + 2φp) − (Vi + 2φp)2φλj

∂Vj

∂λi

− 2pφλi
φλj

(Vi + 2φp)2.

Letting p = −Vj

2φ
, we obtain

∂Vj

∂λi

= 1

2
(ln φ)λi

[
ViVj

Vi − Vj

+ Vj

]
, i �= j. (19)

On the other hand, comparing the coefficients of p-power and using (19), we get the only
equation

φλiλj
= φλi

φλj

φ

[
ViVj

(Vj − Vi)2
+ 1

]
, i �= j. (20)

The higher moments An, with n � 0, can be solved recursively using (17). These
equations (19), (20) are compatible and their solutions are parametrized by 2N functions
of a single variable.

A direct calculation, using MAPLE, confirms that the reduced equation (16) is semi-
Hamiltonian, that is,

∂

∂λk

( ∂Vj

∂λi

Vj − Vi

)
= ∂

∂λk

(
1

2
(ln φ)λi

[
1 −

(
Vi

Vj − Vi

)2
])

= ∂

∂λi

(
1

2
(ln φ)λk

[
1 −

(
Vk

Vj − Vk

)2
])

= ∂

∂λi

( ∂Vj

∂λk

Vj − Vk

)
,

for i, j, k all distinct. Then the reduced equations (16) are thus integrable by the generalized
hodograph transformation [38].

4. Algebraic equations and special reductions

To investigate the reduction problems, we introduce A = 2 ln A−1 to put (19) and (20) in a
more compact form (i �= j)

∂Vj

∂λi

= 1

2
Aλi

[
ViVj

Vi − Vj

+ Vj

]

Aλiλj
= Aλi

Aλj

ViVj

(Vj − Vi)2
,
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or, noting that Vi = 2A2
−1qi ,

∂qj

∂λi

= 1

2
Aλi

[
qiqj

qi − qj

− qj

]
(21)

Aλiλj
= Aλi

Aλj

qiqj

(qj − qi)2
. (22)

Then as in [21] for the dKP case, we impose two further restrictions on the reduced system (21)
and (22). First, from the form (21), we require that the reduced system is translation-invariant
in the sense that

λi → λi + c ⇒ qi → qi, A → A

or, equivalently,

δqi = 0 (23)

δA = 0, (24)

where δ = ∑N
i=1

∂
∂λi

. Secondly, we require the homogeneity of the functions A and qj in the
variables λi . A should be of weight 0 and the qj of weight −1. Hence,

Rqi = − 1

κ
qi (25)

R
∂A

∂λi

= − ∂A

∂λi

, (26)

where κ is a positive integer and R = ∑N
i=1 λi

∂
∂λi

. Plugging (22) into (24), (26) and eliminating
the second derivative, we obtain

− ∂A

∂λi

= R
∂A

∂λi

=
N∑

j=1,j �=i

λj

∂2A

∂λiλj

+ λi

∂2A

∂λ2
i

=
N∑

j=1,j �=i

λj

∂2A

∂λiλj

+ λi


−

N∑
j=1,j �=i

∂2A

∂λiλj




=
N∑

j=1,j �=i

(λj − λi)Aλj
Aλi

qiqj

(qj − qi)2
.

Hence, either Aλi
= 0 or

N∑
j=1,j �=i

(λj − λi)Aλj

qiqj

(qj − qi)2
= −1. (27)

Similarly, plugging (21) into (23) and (25), we get

− 1

κ
qi = Rqi =

N∑
j=1,j �=i

λj

∂qi

∂λj

+ λi

∂qi

∂λi

=
N∑

j=1,j �=i

λj

∂qi

∂λj

− λi

N∑
j=1,j �=i

∂qi

∂λj
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=
N∑

j=1,j �=i

(λj − λi)
∂qi

∂λj

= 1

2

N∑
j=1,j �=i

(λj − λi)
∂A

∂λj

[
qiqj

qj − qi

− qi

]
. (28)

The systems (27) and (28) form 2N algebraic equations for 2N unknowns, the qi and ∂A
∂λi

.
The solutions of the system are essentially unique. With two Riemann invariants and κ = 1,
a simple calculation can yield by carefully choosing the integration constants

q1 = −q2 = 4

λ1 − λ2
, A−1 = (λ1 − λ2)

2

16
. (29)

Hence from (16), we have(
λ1

λ2

)
y

=
(

(λ1−λ2)
3

32 0

0 − (λ1−λ2)
3

32

)(
λ1

λ2

)
x

. (30)

This equation (30) will correspond to the reduction of the Lax operator constructed by the
Riemann–Hilbert method [11, 12]

λ(p) = A−1p + A0 +
1

p
. (31)

If we consider more general Lax reductions of the form for positive integers m and κ [11, 13]

λ(p)m = Am
−1p

m + wm−1p
m−1 + wm−2p

m−2 + · · · + w−κ+1p
−κ+1 + p−κ , m + κ = N,

(32)

then from (15) it is not difficult to see that (32) satisfies the conditions (23)–(26). Hence, its
corresponding characteristic speeds and A−1 will be one of the solutions of the 2N algebraic
equations (27) and (28). It would be interesting to know whether any other solutions exist.

Next, one generalizes the operator R in (25) or (26) to the following forms:

R̂ =
N∑

k=1

ĝk(�λ)∂λk
ĥk(�λ) R̂Vi = − 1

κ
Vi (33)

and

R̃ =
N∑

k=1

g̃k(�λ)∂λk
h̃k(�λ) R̃

∂A

∂λi

= − ∂A

∂λi

, (34)

where �λ = (λ1, λ2, . . . , λN) and (ĝk, ĥk), (g̃k, h̃k) are arbitrary functions satisfying the
conditions compatible with (23), (24)

δĝk = δĥk = δg̃k = δh̃k = 0. (35)

Then a similar calculation can get the following 2N algebraic equations generalizing (27),
(28)

N∑
j=1,j �=i

(ĝj ĥj − ĝi ĥi )Aλj

[
qjqi

qj − qi

+ qi

]
= − 1

κ
Vi


1 + κ

N∑
j=1

ĝj

∂ĥj

∂λj


 (36)

N∑
j=1,j �=i

(g̃j h̃j − g̃i h̃i )Aλj

qiqj

(qj − qi)2
= −


1 +

N∑
j=1

g̃j

∂h̃j

∂λj


 . (37)
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For N = 2 and κ = 1, simple calculations can show that a suitable choice of (ĝ1, ĥ1),

(ĝ2, ĥ2), (g̃1, h̃1), (g̃2, h̃2), not unique, can also obtain the solution (29).
Finally, one notices that if we let

ĥj = h̃j = 1

for j = 1, 2, . . . , N , then we get the weaker condition than (35)

δĝk = δg̃k.

Hence, equations (36), (37) reduce to

N∑
j=1,j �=i

(ĝj − ĝi)Aλj

[
qjqi

qj − qi

+ qi

]
= − 1

κ
Vi

N∑
j=1,j �=i

(g̃j − g̃i)Aλj

qiqj

(qj − qi)2
= −1.

If ĝj = g̃j = λj , then we can obtain (27) and (28).

5. Concluding remarks

We prove the semi-Hamiltonian property of reductions for the dDym and find some particular
solutions invariant under translation and homogeneity. In spite of the results obtained, there
are some interesting issues deserving investigation.

• The integrability and solution structure of equation (12) (or (10)) is unclear [5, 18–20]. It
is not difficult to see that (12) can be extended to

∂ui

∂r
= ri

∂ui

∂s
+

u1u2 · · · uN

	k �=i (uk − ui)
, where ri =

(
N∑

k=1

uk

)
− ui.

One hopes to address these problems elsewhere.
• In [31], the algebraic reductions for dKP are found and in [25, 43], the waterbag reduction

(non-algebraic) for dKP is also found. If we define

An =
∫ ∞

−∞
qnf (q, x, y) dq, n = −1, 0, 1, 2, . . .

then we obtain

λ = p2

(
P

∫ ∞

−∞

f/q

p − q
dq

)
, f = f (q, x, y), (38)

where P
∫

denotes the Cauchy principal value of the integral. Also, from (38), the
‘distribution’ function f (x, y, q) must satisfy the Vlasov-like equation [23, 37, 44]

fy = 2A2
−1qfx − (

A2
−1

)
x
q2fq = {

f,A2
−1q

2}
x,q

. (39)

Comparing (39) and (2), we can assume f = F(λ) for any function F. Hence, the Lax
operator λ will satisfy the nonlinear singular integral equation

λ = p2

(
P

∫ ∞

−∞

F(λ)/q

p − q
dq

)
.

This equation will help us find the (non-)algebraic reductions [22, 34] and study the initial
value problem for dDym as in the case of dKP [42, 43]. It needs further investigations.
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